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C O N S P E C T U S

“Four-wave-mixing” is the generic name for a family of nonlinear electronic and vibrational spectroscopies. These
techniques are widely used to explore dissipation, dephasing, solvation, and interstate coupling mechanisms in

various material systems. Four-wave-mixing spectroscopy needs a firm theoretical support, because it delivers infor-
mation on material systems indirectly, through certain transients, which are measured as functions of carrier frequen-
cies, durations, and relative time delays of the laser pulses. The observed transients are uniquely determined by the
three-pulse-induced third-order polarization.

There exist two conceptually different approaches to the calculation of the nonlinear polarization. In the standard
perturbative approach to nonlinear spectroscopy, the third-order polarization is expressed in terms of the nonlinear
response functions. As the material systems become more complex, the evaluation of the response functions becomes
cumbersome and the calculation of the signals necessitates a number of approximations.

Herein, we review alternative methods for the calculation of four-wave-mixing signals, in which the relevant laser
pulses are incorporated into the system Hamiltonian and the driven system dynamics is simulated numerically exactly.
The emphasis is on the recently developed equation-of-motion phase-matching approach (EOM-PMA), which allows
us to calculate the three-pulse-induced third-order polarization in any phase-matching direction by performing three
(with the rotating wave approximation) or seven (without the rotating wave approximation) independent propaga-
tions of the density matrix. The EOM-PMA is limited to weak laser fields (its domain of validity is equivalent to the
approach based on the third-order response functions) but allows for arbitrary pulse durations and automatically
accounts for pulse-overlap effects. As an illustration, we apply the EOM-PMA to the calculation of optical three-pulse
photon-echo two-dimensional (2D) signals for a generic model system, which represents a characteristic photophysi-
cal dynamics of large molecules or chromophores in condensed phases.

The EOM-PMA is easy to implement and can straightforwardly be incorporated into any computational scheme,
which provides the time-dependent density matrix or wave function of the material system of interest. In particular,
EOM-PMA-based computer codes can efficiently be implemented on parallel computers. The EOM-PMA facilitates con-
siderably the computation of four-wave-mixing signals and 2D spectra, in both vibrational and electronic spectros-
copy. The EOM-PMA can be extended to higher order optical responses, e.g., heterodyned 3D IR, transient 2D IR, and
other six-wave-mixing techniques.
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1. Introduction
“Four-wave-mixing” is the generic name for a family of non-

linear multidimensional (electronic or vibrational) spec-

troscopies. Basically, these spectroscopies are analogues to the

multidimensional nuclear magnetic resonance (NMR) tech-

niques but use optical or infrared (rather than radio) frequen-

cies and femtosecond (rather than millisecond) time

resolution.1,2 Four-wave-mixing spectroscopy, in particular, the

three-pulse photon-echo (3PPE) technique, is a powerful tool

that provides information on dissipation, dephasing, solva-

tion, and (electronic or vibrational) interstate coupling mech-

anisms in various material systems.1-10 Four-wave-mixing

spectroscopy delivers information on material systems indi-

rectly, through certain transients, which are measured as func-

tions of carrier frequencies, durations, and relative time delays

of the laser pulses. If we characterize the system dynamics in

terms of the time-dependent density matrix, then four-wave-

mixing spectroscopy monitors populations and coherences in

real time. The monitoring of quantum coherences has become

the trademark of 3PPE spectroscopy, in contrast to

pump-probe and fluorescence up-conversion spectroscopies,

which primarily deliver information about the (electronic or

vibrational) population dynamics.

Four-wave-mixing spectroscopy is an intrinsically nonlin-

ear technique. The observed transients are uniquely deter-

mined by the three-pulse-induced third-order polarization.

Rephrasing Feynman,11 the nonlinear polarization is the sum-

mit of four-wave-mixing spectroscopy. The entire subject is

either the climb up to the summit (when we calculate the non-

linear polarization) or the slide down from the summit (when

the nonlinear polarization is used to calculate four-wave-mix-

ing signals).

There exist two major techniques for the climb up to the

summit. In the standard perturbative approach, the third-or-

der polarization P(t) is expressed as a triple time integral

involving the nonlinear response function3

Here, E(t) represents the electric field of the three pulses involved

and parametrically depends upon their carrier frequencies,

phases, and mutual delays. The nonlinear response function S(t1,
t2, t3) is determined by the dynamics of the material system in the

absence of external pulses. It can be calculated analytically for

few-level systems or (damped) harmonic oscillator systems.3 As

the material systems become more complex and their dynam-

ics becomes nonlinear, the evaluation of the response functions

necessitates a number of approximations8,9,12 or requires exten-

sive computer simulations.13,14 The nonlinear response func-

tions can also be calculated through the time-evolution equations

for the density matrix of the material system.15 These advanced

approaches to the evaluation of nonlinear response functions are

reviewed by Tanimura and Ishizaki in this special issue.

The conceptual alternative to the perturbative approach (eq 1)

is the nonperturbative evaluation of time- and frequency-resolved

spectra. All relevant optical fields E(t) are incorporated into the

system Hamiltonian, and the dynamics of the driven system is

calculated numerically exactly. The present paper reviews such

nonperturbative approaches to the calculation of four-wave-mix-

ing signals. The structure of the paper is inspired by Feynman’s

mountaineering allegory mentioned above. Section 2 gives a

short overview of the existing nonperturbative methods. The

emphasis is on the recently developed equation-of-motion

phase-matching approach (EOM-PMA).16,17 Section 3 illustrates

applications of the EOM-PMA to the calculation of optical 3PPE

two-dimensional (2D) signals for a generic model system, which

represents characteristic photophysical dynamics in large mole-

cules and condensed phases, accounting for strong electronic

and electronic-vibrational coupling effects. It also includes vibra-

tional relaxation and dephasing via the coupling of the reaction

mode to a thermal environment. Section 4 contains conclusions

and an outlook.

2. Climb Up to the Summit: Calculation of
the Nonlinear Polarization

2.1. Nonperturbative Methods for the Calculation of

Four-Wave-Mixing Signals. The idea behind the nonper-

turbative approach is simple and obvious. For the study of

the dynamics of the vast majority of chemically interest-

ing systems, we have to resort to numerical methods and/or

simulations. Suppose that we wish to calculate the spectro-

scopic response of such a system. To do so, we have to

take into account the interaction of the system with the per-

tinent laser pulses. Because we have to resort to a numer-

ical simulation anyway, it seems logical to incorporate all

relevant laser fields into the system Hamiltonian (which

thus becomes time-dependent) and to calculate numeri-

cally the dynamics of the driven system.18 Because no

assumptions are made about the relative timings of the

pulses involved, all effects because of pulse overlaps are

accounted for automatically. This is the great advantage of

the nonperturbative approach. When dealing with complex

multilevel systems (notably with strong electronic and vibra-

tional couplings as well as with bath-induced relaxations),

∫0

∞
dt1 ∫0

∞
dt2 ∫0

∞
dt3S(t1, t2, t3)E(t - t3)E(t - t3 - t2) ×

E(t - t3 - t2 - t1) (1)
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the nonperturbative approach has proven its advantage

over perturbative treatments.18 The nonperturbative

approach has been applied to various time- and frequency-

resolved two-pulse (see ref 19 for a recent review) and

three-pulse16,17,20-28 spectroscopic techniques.

In the nonperturbative approach, we have to pay a certain

overhead, however. The problem is that a nonperturbative cal-

culation yields the total polarization, which must be further

decomposed to single out a specific combination of the wave

vectors (the so-called phase-matching condition) characteris-

tic for a particular optical signal. The problem can be resolved

be performing a discrete Fourier transform of the underlying

Liouville equation with respect to the phases of the pertinent

pulses.5,6 Alternatively, we can compute the total polariza-

tion for different phases of the pulses involved and express

the polarization for a certain phase-matching condition as a

linear combination of the computed total polarizations. For

two-pulse techniques, this requires four independent calcula-

tions of the total polarization.18 For the calculation of four-

wave-mixing signals, the situation is more involved. As shown

in refs 20-22, the extraction of the 3PPE polarization from the

total polarization within the rotating wave approximation

(RWA) requires the solution of a 12 × 12 system of linear

equations. This implies that one has to determine the time

evolution of 12 density matrices (in fact, one has to perform

three additional time propagations to remove the linear terms

from the nonlinear polarization) and to solve a 12 × 12 sys-

tem of linear matrix equations at each time step. Without

invoking the RWA, the computational cost is even higher.

The EOM-PMA leads to a substantial simplification of these

calculations. This method, which has been developed in refs

16 and 17 for systems with strong electronic-vibrational cou-

plings and extended in ref 24 to multichromophoric systems

with static disorder, is outlined below in a general form, which

is equally suitable for electronic and vibrational spectroscopy.

2.2. EOM-PMA. Let H be the system Hamiltonian. The

system-field interaction in the dipole approximation is writ-

ten as

Here, λa, ka, ωa, Ea(t), and τa denote the intensity, wave vec-

tor, frequency, dimensionless envelope, and the central time

of the pulses; V is the transition-dipole-moment operator. We

can thus write the master equation for the reduced density

matrix (p ) 1)

with D being a suitable dissipative operator.29,30 For simplic-

ity of notation, D is written as a time-independent operator.

Upon the substitution DF(t) f ∫0
t dt′D(t - t′)F(t′), all the derived

formulas remain true for a general non-Markovian dissipa-

tive operator. Strictly speaking, D depends upon the laser

fields involved. Because we consider weak laser pulses, this

effect can safely be neglected.31 If we include all of the rele-

vant degrees of freedom into the system Hamiltonian H, then,

of course, D ) 0.

The total laser-induced polarization is

where the angular brackets indicate the trace. We wish to

extract the 3PPE polarization P3P(t) from eq 5; that is, we

search for the contribution that is proportional to exp{(ik3Pr}
and thus obeys the 3PPE phase-matching condition

so that

It is thus sufficient to evaluate the complex polarization P3P
(+)(t).

For this purpose, only terms with the phase factors exp{-ik1r},
exp{+ik2r}, and exp{+ik3r} can be retained in the Hamilto-

nian interaction (eq 2). The master equation obtained in this

manner

and the original master eq 4 yield exactly the same complex

polarization P3P
(+)(t). Equation 8 contains, however, only half of

the Liouville pathways contributing to eq 4, which facilitates

the extraction of P3P
(+)(t). Indeed, let us consider F1(t) in eq 8 as

a function of the pulse strengths

F1(λ1, λ2, λ3; t) can be regarded as a generating function for the

various Liouville pathways, which allows us to compute a par-

ticular contribution to the total polarization, obeying the nec-

essary phase-matching condition. In our case

As can be proven by expanding F1(λ1, λ2, λ3; t) in a Taylor

series

Hint(t) ) - ∑
a)1

3

(exp{+ikar}υa
(+)(t) + exp{-ikar}υa

(-)(t)) (2)

υa
(()(t) ) VλaEa(t - τa)exp{-iωat} (3)

∂tF(t) ) -i[H + Hint(t), F(t)] + DF(t) (4)

P(t) ≡ 〈VF(t)〉 (5)

k3P ) -k1 + k2 + k3 (6)

P3P(t) ) P3P
(+)(t)exp{+ik3Pr} + c.c. (7)

∂tF1(t) ) -i[H + υ1
(-)(t) + υ2

(+)(t) + υ3
(+)(t), F1(t)] + DF(t)

(8)

F1(λ1, λ2, λ3; t) ) ∑
i,j,k)0

∞

λ1
i λ2

j λ3
kF1

i,j,k(t) (9)

P3P
(+)(t) ) exp{ik3Pr}〈VF1

111(t)〉 (10)
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Therefore, the 3PPE polarization can be evaluated as

Here, F1(t) obeys eq 8 and

The density matrices F̂i(t) obey the same equations as the cor-

responding density matrices Fi(t) but with the υ1
(-)(t) term omit-

ted. In writing eq 12, we have used the fact that 〈VF1(0, 0, 0;

t)〉 ≡ 0, assuming that there exists no permanent dipole

moment in the ground state.

A few comments are in order. First, the Fi(t) and F̂i(t) are not

true density matrixes. Because the υa
(()(t) functions are com-

plex, Fi(t) and F̂i(t) are not Hermitian operators. Second, eq 12

is valid in the leading order of the perturbation expansion in

the optical fields involved; that is, P3P(t) ∼ λ1λ2λ3 + O(λ1
nλ2

kλ3
m),

where n + k + m > 3. Thus, the domain of validity of eq 12

coincides with that of the third-order perturbation expansion

(eq 1). Third, eq 12 accounts for all effects because of pulse

overlaps automatically.

Static inhomogeneous broadening of the 3PPE transients

has to be taken into account in many practically important

cases. Because of the interaction with an environment, the fre-

quencies of the electronic transitions are not fixed but have a

certain distribution. Therefore, we have to average the 3PPE

signals over this distribution. This procedure can efficiently be

accomplished by the method suggested in ref 24.

Summarizing, to calculate the time evolution of the 3PPE

polarization for particular values of the pulse delay times, we

have to perform seven density-matrix propagations. It is

important to note that not all seven equations depend upon

the central times of the pulses simultaneously, which allows

for considerable simplifications and optimizations in the com-

putation of 3PPE signals. All other four-wave-mixing signals

can be calculated in an analogous manner.

2.3. Rotating Wave Approximation. The EOM-PMA

scheme of the calculation of the 3PPE polarization presented

in section 2.2 is general. It is valid for any system interacting

with three transform-limited laser pulses. The EOM-PMA can

further be simplified by invoking the RWA to the system-field

Hamiltonian interaction.

Let εR be the eigenenergies of the system Hamiltonian

The RWA amounts to the omission of the counter-rotating

terms (∼exp{(i(εR + ωa)t}) while retaining the co-rotating terms

(∼exp{(i(εR - ωa)t}) in the master equation (eq 4). The use of

the RWA is justified if the phase factors exp{(i(εR + ωa)t} are

highly oscillatory on the time scale of the system dynamics.

It is well-established that the RWA is accurate for electronic

spectroscopy with visible or UV pulses. It can also be applied

in infrared spectroscopy if there exists a clear separation of

high- and low-frequency vibrational modes.

Within the RWA, the interaction Hamiltonian (eq 2) can be

written as follows:

Here, V> and V< are so-called up and down transition dipole

moments. In the eigenvalue representation of the system

Hamiltonian (eq 16)

Clearly, all of the expressions derived in section 2.2 remain

valid within the RWA, provided that we replace υa
(-)(t) by υa

<(t)
and υa

(+)(t) by υa
>(t).

The RWA leads to a substantial simplification of the key for-

mulas (eqs 12-15). Consider, for example, a system with a

ground state (|g〉) and an excited electronic state (|e〉), which

may be coupled to any number of vibrational modes q. Then

Here, the matrix element of the transition dipole moment V(q)

may depend upon the vibrational coordinates q because of

non-Condon effects. Evidently, the X matrices obey the

properties

Because of the identities of eq 21, 〈XF4(t)〉 ≡ 0. Furthermore,

〈XF̂1(t)〉 ) 〈X(F̂2(t) + F̂3(t))〉, because only the terms linear in the

λ1λ2λ3F1
111(t) ) F1(λ1, λ2, λ3; t) + F1(λ1, 0, 0; t) -

F1(λ1, 0, λ3; t) - F1(λ1, λ2, 0; t) - F1(0, λ2, λ3; t) -

F1(0, 0, 0; t) + F1(0, 0, λ3; t) + F1(0, λ2, 0; t) +

O(λ1
nλ2

kλ3
m), n + k + m > 3 (11)

P3P
(+)(t) ) exp{ik3Pr}〈V(F1(t) - F2(t) - F3(t) + F4(t) -

F̂1(t) + F̂2(t) + F̂3(t))〉 (12)

∂tF2(t) ) -i[H + υ1
(-)(t) + υ2

(+)(t), F2(t)] + DF2(t) (13)

∂tF3(t) ) -i[H + υ1
(-)(t) + υ3

(+)(t), F3(t)] + DF3(t) (14)

∂tF4(t) ) -i[H + υ1
(-)(t), F4(t)] + DF4(t) (15)

H |α〉 ) εα |α〉, ε0 < ε1 < ε2 ... (16)

Hint(t) ) - ∑
a)1

3

(exp{+ikar}υa
> (t) + exp{-ikar}υa

<(t)) (17)

υa
> (t) ) V>λaEa(t - τa)exp{-iωat},

υa
<(t) ) V<λaEa(t - τa)exp{iωat} (18)

(V>)α� ) [Vα� for α > �
0 for α e �

, (V<)α� ) [Vα� for α < �
0 for α g �

,

Vα� ≡ 〈α |V |�〉 (19)

V> ) X†V(q), V< ) XV(q) ; X† ≡ |e〉〈g | , X ≡ |g〉〈e | (20)

(X†)2 ≡ X2 ≡ 0; X†X ≡ |e〉〈e | , XX† ≡ |g〉〈g | (21)
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laser pulses contribute to F̂1(t), F̂2(t), and F̂3(t). The last three

terms in eq 12 cancel each other, and we arrive at the

result16,17

The 3PPE polarization for any electronic two-level system can

thus be evaluated within the RWA by performing propaga-

tions of only three density matrices. The analysis can straight-

forwardly be generalized to systems with more than two

electronic levels.

3. Slide Down from the Summit:
Application of the EOM-PMA to 2D
Electronic Three-Pulse Photon Echo
Spectroscopy
To illustrate the application of the EOM-PMA, we consider a

model system with a nontrivial multilevel excited-state dynam-

ics. The system dynamics is governed by electronic interstate

couplings, electron-vibrational intrastate interactions, as well

as weak dissipation induced by the interaction with a har-

monic bath. We calculate 2D electronic 3PPE spectra for this

model to show how the signals reflect the underlying system

dynamics by the comparison of the signals to characteristic

system observables, such as excited electronic-state popula-

tions and expectation values of the nuclear coordinate.

3.1. Model Hamiltonian, Relaxation Operators, and
Observables. The system is described by a single dimension-

less coordinate Q coupled to three (one ground |g〉 and two

excited |e1〉 and |e2〉) electronic states. Adopting a diabatic

electronic representation and the harmonic approximation, the

system Hamiltonian reads

where i ) g, e1, and e2. P is the momentum conjugated to the

coordinate Q, and Ω ) 0.074 eV (≈600 cm-1) is the vibra-

tional frequency of the harmonic mode. ∆1 ) 1 and ∆2 ) 3

are the dimensionless displacements of the excited-state equi-

librium geometry from that of the ground state (∆g ) 0). The

vertical excitation energies are chosen as ε2 ) ε1 + 2Ω, and

the electronic coupling V12 ) 0.02 eV. The corresponding dia-

batic and adiabatic potential energy surfaces are shown in Fig-

ure 1.

All of the laser pulses involved are assumed to have Gauss-

ian envelopes

equal amplitudes, the same carrier frequencies (ω1 ) ω2 ) ω3

) ω ) ε1 + 1.35Ω), and durations (full width at half-maxi-

mum 2(ln 2)-1/2/Γ ) 25 fs). It is assumed that the excited state

|e1〉 is optically bright, while the state |e2〉 is optically dark. The

operator X in eqs 20-22 is thus defined as

The Condon approximation is used, so that V(q) ) 1 in eq 20.

The relaxation operator D in eqs 8, 13, and 14 is taken as

the sum of the vibrational relaxation operator R and the

optical dephasing operator p

where R is described by multilevel Redfield theory, as

detailed elsewhere16,17,27,28 (see also ref 32). Briefly, vibra-

tional relaxation is introduced via a bilinear coupling of the

system oscillator mode to a harmonic bath, characterized by

an Ohmic spectral function J(ωb) ) ωηbexp(-ωb/ωc),29 where

η is a dimensionless system-bath coupling parameter and ωc

is the bath cutoff frequency. The optical dephasing operator is

defined as

with 	eg being the optical dephasing rate, Pg ≡ |g〉〈g| being the

projector to the ground electronic state, and Pe ≡ 1 - Pg. The

vibrational relaxation parameters are chosen as η ) 0.1, ωc )
Ω, and the optical dephasing rate 	eg ) 130 fs-1 (∼0.07Ω),

which is reasonable for the low temperature (10 K) considered.

The 3PPE polarization P3P(t) is calculated within the RWA via

eq 22. In addition to the 3PPE 2D spectra, we monitor char-

acteristic system observables, such as the diabatic population

of the state |e1〉

P3P
(+)(t) ) 〈X(F1(t) - F2(t) - F3(t))〉 (22)

H ) Hg + He (23)

Hg ) |g〉hg〈g | (24)

He ) |e1〉(he1 + ε1)〈e1|+ |e2〉(he2 + ε2)〈e2|+

(V12|e1〉〈e2|+h.c.) (25)

hi )
Ω
2

{P2 + Q2} - Ω∆iQ (26)

FIGURE 1. Electronic ground state (solid line), excited-state diabatic
(solid lines) and adiabatic (dots) potential energy surfaces for our
model system. Unperturbed vibrational levels (dashed lines) and
vibronic eigenstates (solid lines), as well as the pulse carrier
frequency are indicated.

E(t) ) exp{-(Γt)2} (27)

X ) |g〉〈e1| (28)

DFi(t) ) RFi(t) + pFi(t) (29)

pF(t) ≡ 	egPgF(t)Pe + h.c. (30)
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and the expectation value of the system vibrational coordi-

nate in the excited state

where |e〉 ) |e1〉 X |e2〉. The density matrix F(t) in eqs 31 and

32 is calculated according to the standard Redfield equation

[the relaxation operator is defined by eq 29 with Fi(t) ) F(t)],
and the interaction with the pump field is included in the com-

mutator. The pump-pulse amplitude, frequency, and duration

for the calculation of P1(t) and Qe(t) are as those of the pulses

in the 3PPE setup. The pump pulse is centered at t ) 0.

3.2. Two-Dimensional Three-Pulse Photon Echo. The

2D 3PPE signal is determined by two Fourier transformations

of the nonlinear polarization P3P(t, τ, T) with respect to the

coherence time τ (delay between the first two pulses) and the

detection time t

where T is the population time, i.e., the delay between the sec-

ond and third pulses. The frequencies associated with the

coherence time, ωτ, and the detection time, ωt, are usually

referred to as absorption (or excitation) and emission (or

probe) frequencies, respectively. The two dimensions are pro-

vided by ωτ and ωt, and the 2D scans are recorded at a fixed

population time T. The 2D signal (eq 33) is complex-valued.

Here, we consider only the real part, which is associated with

the absorptive changes.1 The displayed emission and absorp-

tion frequencies (ωt and ωτ) are given relative to the vertical

excitation energy ε1. The latter is arbitrary and does not need

to be explicitly defined.

Figure 2 shows 2D scans calculated for various population

times. The absorption frequency ωτ reveals those system tran-

sitions that are excited in the experiment. The emission fre-

quency ωt, on the other hand, indicates at which frequencies

the emission takes place. On the diagonal of each 2D scan,

the peaks corresponding to ωτ ) ωt are located, whereas the

peaks with ωτ * ωt are the so-called cross-peaks. Within the

employed resolution conditions (low temperature and short

pulses), the obtained 2D spectra reveal the multilevel struc-

ture of the electronic states to a good extent. The most

strongly populated levels are those closest to the laser fre-

quency and correspond to ωτ ) 0.067 and 0.082 eV. The

transitions to the levels that are about one vibrational quan-

tum higher and lower than the most efficiently populated lev-

els are also resolved. All of the excited levels are optically

coupled to the ground-state vibrational manifold. Therefore,

there are many ways to satisfy ωτ * ωt. The ground-state

manifold is harmonic, and the location of the peaks in the 2D

patterns reveals the system frequencies in the excited state (cf.

Figure 1). The larger splittings between the peaks are of the

order of the vibrational frequency Ω. The smaller splittings

arise because of the interstate electronic coupling V12.

A comparison of the 2D scans for various population times

reveals considerable intensity modulations of the peaks. There

are several mechanisms leading to these intensity modula-

tions. One of them is population relaxation: while absorption

occurs always at the same frequencies (if the pulse parame-

ters remain unchanged), emission depends upon T because of

the population flow from higher to lower levels. At larger T,

the 2D pattern may thus loose some intensity in the region of

larger ωt and gain intensity at smaller emission frequencies.

Another reason for the signal intensity modulations with T are

coherences, which can be created during the excitation pro-

cess. If several levels are coherently excited, signal modula-

tions with frequencies corresponding to energy differences

between these levels can occur. The intensity modulations in

Figure 2 are rather of the coherent character, while the effect

of population relaxation is not yet very prominent at the short

population times considered. The two dominant time scales of

oscillations in the peak intensities are determined by the char-

acteristic system frequencies, i.e., by the vibrational frequency

Ω (higher frequency) and by the electronic coupling V12 (lower

frequency). The faster time scale is revealed, e.g., by compar-

ison of the scans at T ) 0, 30, and 60 fs. The off-diagonal

peaks lose their intensity at 30 fs and reappear again at 60

fs. The longer period is visible, e.g., as a pronounced change

in the structure of the central peak at T ) 140 fs, compared

to T ) 0, 30, or 60 fs. At early times (upper panels in Figure

2), one can clearly see a four-peak substructure, whereas at

140 fs, essentially one peak is resolved.

A better view of the oscillations of peak intensities with T
is provided by Figure 3, which shows the intensity modula-

tion of the cross (Figure 3a) and diagonal (Figure 3b) peaks.

The excited-state coordinate expectation value Qe(t) is depicted

in Figure 3c. The low-frequency oscillations in the peak inten-

sities are suppressed relatively quickly. Essentially, a single

beating at T ≈ 300 fs (Figure 3a) and T ≈ 250 fs (Figure 3b)

is resolved. The high-frequency beatings in the peak intensi-

ties and in Qe(t) survive for longer times. The cross-peak inten-

sity evolution (solid line in Figure 3a) and the population

dynamics P1(t) (dashed line in Figure 3a) contain very similar

information. The low-frequency oscillations are in phase, are

modulated by higher frequencies and decay on the same

P1(t) ) 〈e1|F(t) |e1〉 (31)

Qe(t) ) 〈e |F(t)Q |e〉/〈e |F(t) |e〉 (32)

I(ωτ, ωt, T) ∼ ∫ dτ ∫ dt exp(-iωττ)exp(iωtt)P3P(t, τ, T)
(33)
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time scale. In addition to the oscillations, the diagonal-peak

intensity (Figure 3b) exhibits a slow decay, which reflects pop-

ulation relaxation to lower states. The coordinate expecta-

tion value (Figure 3c) shows the oscillations between the two

diabatic electronic states and the subsequent relaxation to the

value 〈Q〉 ) 2, which corresponds to the mean value of the

minima at Q ) 1 and 3.

4. Conclusions and Outlook

We have reviewed a novel and efficient method for the cal-

culation of the three-pulse-induced third-order polarization. In

this method, the interactions of the system with the relevant

laser pulses are incorporated into the system Hamiltonian and

the driven system dynamics is simulated numerically exactly.

We have described in some detail the EOM-PMA, which allows

for the calculation of the third-order polarization in any phase-

matching direction by performing three (with the RWA) or

seven (without the RWA) independent propagations of the den-

sity matrix. As has been pointed out in ref 24, the EOM-PMA-

based computer codes can therefore efficiently be

implemented on parallel computers. The EOM-PMA is limited

to weak laser fields (its domain of validity is equivalent to the

approach based on the third-oder response functions) but

allows for arbitrary pulse durations and automatically accounts

for pulse-overlap effects.

The EOM-PMA can straightforwardly be incorporated into

any computer program, which provides the time evolution of

the density matrix or the wave function of any material sys-

tem of interest. Besides the multilevel Redfield equa-

tion16,17,27,28 and the non-Markovian time-nonlocal master

equation,24-26 the EOM-PMA can be combined with the Lind-

blad master equation,33 the surrogate Hamiltonian

approach,33 the stochastic Liouville equation,30 the quantum

Fokker-Planck equation,30 and the density matrix34 or the

wave function19 multiconfigurational time-dependent Hartree

(MCTDH) methods.

Nonperturbative methods have also been applied to calcu-

late two-time fifth-order nonresonant Raman response

functions,35-37 three-time third-order infrared response

functions,38,39 and (within additional approximations) three-

time third-order optical response functions40 via classical non-

equilibrium molecular dynamics simulations. Note that the

method by Yagasaki and Saito38 (see their eq 6) is conceptu-

ally similar to the EOM-PMA. We propose that the EOM-PMA

can also be incorporated into non-equilibrium computer sim-

ulation schemes. The application of this strategy for optical

FIGURE 2. Two-dimensional 3PPE scans for different population times (indicated on the panels). The intensity scaling is the same in all
graphs. Only positive parts of the spectra are displayed.
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four-wave mixing signals may require additional approxima-

tions, e.g., similar to those made in ref 40. The application of

the EOM-PMA to infrared signals, on the other hand, seems to

be quite straightforward. One can thus avoid the problem of

computing stability matrices, which is a bottleneck in semi-

classical simulations of the response functions.13 Of course, we

have to perform three (with the RWA) or seven (without the

RWA) series of (short) molecular dynamics simulations (with

the initial conditions sampled according to the equilibrium dis-

tribution without pulses) to obtain the four-wave-mixing sig-

nal for particular values of interpulse delays and carrier

frequencies. To obtain the signal for different values of the

parameters, the simulation cycle must be repeated, which can

be computationally expensive. Nevertheless, this procedure

can be much cheaper than the direct simulation of the non-

linear response functions and subsequent calculation of sig-

nals by multiple time integrals (eq 1). If we are interested, e.g.,

in a four-wave-mixing transient as a function of the delay T
between the second and third pulses, we can obtain the

desired signal by performing 3N (with the RWA) or 7N (with-

out the RWA) series of simulations, with N being the number

of discretization intervals on the T axis. On the other hand, the

complete three-time response function S(t1, t2, t3) is necessary

for the calculation of any particular four-wave-mixing tran-

sient beyond the impulsive limit. This approach requires ∼N1

× N2 × N3 series of simulations and N subsequent evalua-

tions of triple time integrals.

To summarize, we propose that the EOM-PMA can consid-

erably facilitate the computation or simulation of various four-

wave-mixing signals and 2D spectra in the visible as well as

infrared spectral regions. The formalism can be extended to

higher order optical responses, e.g., heterodyned 3D IR,41,42

transient 2D IR,7 polarizability response spectroscopy,43 or

interference between four- and six-wave-mixing signals.44

This work has been supported by the Deutsche Forschungsge-

meinschaft (DFG) through a research grant and through the

DFG Cluster of Excellence “Munich Centre of Advanced Photo-

nics” (www.munich-photonics.de).
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